Unit 4 Bare Necessities - Exponents and Logarithms Rewriting Exponents and Logarithms

logarithmic form: $\log _{3} 9=2$
All Together!!
EX1. Rewrite $6^{3}=216$ in logarithmic form.

You Try!!

Rewrite in logarithmic form.

1. $3^{5}=243$
2. $8^{4}=4096$

Solving Logarithmic Equations

1. apply a property if needed to write as one log
2. convert to exponential form
3. solve for x

All Together!!
exponential form: $3^{2}=9$

EX2. Rewrite $\log _{2} 16=4$ in exponential form.

Rewrite in exponential form.
3. $\log _{5} 125=3$
4. $\log 100=2$

Properties
${ }^{*} \log _{b} M+\log _{b} N=\log _{b} M \cdot N$

* $\log _{b} M-\log _{b} N=\log _{b} \frac{M}{N}$
*If $\log _{b} M=\log _{b} N$, then $M=N$

EX3. $\log _{5}(3 x+11)=4$
EX4. $\log 6 x-\log 3=2$

You Try!!

5. $\log _{4} x=3$
6. $\log _{3} 8+\log _{3}(x-2)=6$
7. $\log _{9}(x+20)=\log _{9}(3 x-4)$
8. $\log _{7}(3 x+6)=4$

Solving Exponential Equations

1. Take the natural log of both sides
2. bring exponent down in front of the log
3. solve for x

All Together!!

EX5. $5^{x}=37$

You Try!!

9. $e^{6 x}=2.9$
10. $1.54^{x}=28$
11. $4^{x+3}=22$
12. $3.8^{2 x-6}=19.1$

Exponential Growth and Decay

y : final amount of whatever you are measuring

$$
y=a(b)^{t}
$$

a: initial amount
b: growth or decay factor ($1+r$ for growth; $1-r$ for decay $)$
t : number of time periods that pass

All Together!!

EX7. Ryan's motorcycle is now worth $\$ 2500$. It has decreased in value 12% each year since it was purchased. If he bought it four years ago, what did it cost new?

You Try!!

13. According to a computer model, a population of salmon will decline each year by 6\%. In 2015, there are currently 3000 salmon in the population. How many salmon are predicted to be in that population in 2025 ?
14. The half-life of a radioactive element is the time it takes for 50% of its atoms to decay. About how many grams of a radioactive element would remain from a sample of 20 g after 3 half-lives?
15. Movie tickets now average $\$ 9.75$ a ticket, but are increasing 15% per year. How much will they cost 5 years from now?

Compound Interest

Compounded over time:

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Compounded continuously:

$$
A=P e^{r t}
$$

A: final amount of money
P : initial amount of money
r : interest rate (as a decimal)
n : number of times compounded in a year
t: time (in years!)

All Together!!

EX8. What amount will an account have after 18 years if $\$ 250$ is invested at 5% interest compounded semiannually?

You Try!!

16. What amount invested at 9% interest compounded continuously for 4 years will yield $\$ 590$?
17. If $\$ 800$ is invested at 7% interest compounded continuously, how long will it take before the amount is \$1100?
18. Determine the amount that must be invested at 4.5% interest compounded quarterly, so that $\$ 300,000$ will be available for retirement in 15 years.
19. How long does it take $\$ 800$ to double if it is invested at 5% interest compounded monthly?
