Unit 2 Review - Polynomials

Polynomial Division

Divide using either long division or synthetic division (when possible).

1.
$$(9x^3 - 2x^2 + 5x + 4) \div (x - 3)$$

2.
$$(6x^3 + 19x^2 + 7x - 12) \div (2x + 3)$$
.

3.
$$(12x^3 - 7x^2 - 38x + 35) \div (4x - 5)$$

4.
$$(x^4 + 7x^3 - 6x + 2) \div (x + 4)$$

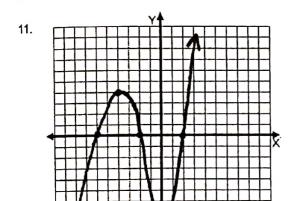
Remainder/Factor Theorem

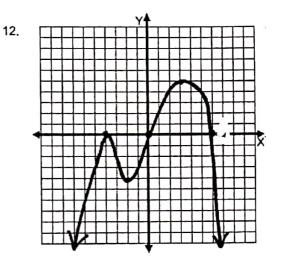
Determine which are factors of $2x^{91} - x^{90} - 10x^{89}$.

5.
$$x-1$$

6.
$$2x - 5$$

7.
$$x+2$$


Polynomial Vocabulary


Classify each polynomial by the degree and by the number of terms.

8.
$$7x^3 - 2x$$

9.
$$-10x^4 - 3x^3 + 2$$
 10. 7

Zeroes and Multiplicity, Extrema, Intervals for Increasing/Decreasing/Positive/Negative For each graph and equation, determine all key features.

End Behavior:

13. $y = -2(x+1)^2(3x-1)$

Zeroes:

Degree:

Extrema:

Pos: _____

Neg: _____

Inc: ______
Dec: _____

End Behavior:

Zeroes:	

Degree: _____

Extrema: _____

Pos: ______

Inc: _____

Dec: _____

End Behavior:

14.
$$y = x^3(x-2)(x-3)$$

Zeroes:

Degree: _____

Extrema:

Pos: _____

Neg: _____

Dec:

End Behavior:

Solve Polynomials

Determine all real and complex solutions.

15.
$$x^3 - 5x^2 + 3x - 15 = 0$$

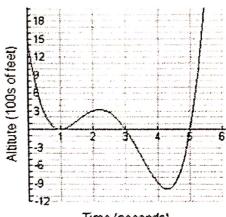
16.
$$x^4 - 3x^3 - 24x^2 + 80x = 0$$

17.
$$x^3 + 64 = 0$$

18.
$$x^3 + 5x^2 + 10x + 24 = 0$$

Applications

19. The weight of an ideal round-cut diamond can be modeled by $w = 0.0074d^3 - 0.087d^2 + 0.32d$, where w is the diamond's weight (in carats) and d is its diameter (in millimeters). According to the model, what is the weight of a diamond with a diameter of 12 millimeters?


20. The profit P (in millions of dollars) for a t-shirt manufacturer can be modeled by $P = -x^3 + 5x^2 + 9x$, where x is the number of t-shirts produced (in millions). Currently, the company produces 5 million t-shirts and makes a profit of \$45,000,000. What lesser number of t-shirts could the company produce and still make the same profit?

21. A box has a height of x - 4 inches and a length of x + 3 inches. If the volume of the box is $2x^3 - 3x^2 - 23x + 12$ cubic inches, determine the width of the box.

22. When fighter pilots train for dog-fighting, a "hard-deck" is usually established below which no competitive activity can take place. The polynomial graph given shows Maverick's altitude (y in 100s of feet) above and below this hard-deck during a 5 second (x) interval.

- b. How many total seconds was Maverick above the hard-deck during the first 5 seconds?
- c. After how many seconds is Maverick 300 feet above the hard-deck?
- d. Determine the equation of the function in factored form.

Time (seconds)

Rates of Change

23. Find the average rate of change from x = -1 to x = 3 for each of the functions below.

a.
$$a(x) = 2x + 3$$

b.
$$b(x) = x^2 - 2$$

c.
$$c(x) = 2^x - 1$$

d. Which function has the greatest average rate of change over the interval [-1, 3]?

24. In general as $x \to \infty$, which function eventually grows at the fastest rate?

$$a. \quad a(x) = 3x$$

b.
$$b(x) = x^3$$

c.
$$c(x) = 3^x$$