\qquad

Math 3 Unit 5: Reasoning With Geometry

Monday	Tuesday	Wednesday	Thursday	Friday
			March 15 Geometric properties	
March 18			HW: 5.1	

5.1-Geometric Properties

Name each of the following types of angles. Then, state whether they are congruent or supplementary.

1)	Name: Congruent or Supplementary	2)	Name: Congruent or Supplementary
3)	Name: Congruent or Supplementary	4)	Name: Congruent or Supplementary

For \# 5 - 10, a || b and p is a transversal. Fill in the blanks describing the angle relationships with regard to $\angle 3$.
5. $\angle 3$ and \angle \qquad are a linear pair
6. $\angle 3$ and \angle \qquad are vertical angles
7. $\angle 3$ and \angle \qquad are corresponding angles
8. $\angle 3$ and \angle \qquad are alternate interior angles
9. $\angle 3$ and \angle \qquad are consecutive interior angles
10. Multiple Choice: In the accompanying diagram, line ℓ is parallel to line m, and line t is a transversal. Which must be a true statement?
A $m \angle 1+m \angle 4=180$
B $\mathrm{m} \angle 3+\mathrm{m} \angle 6=180$
C $\mathrm{m} \angle 1+\mathrm{m} \angle 8=180$
D $m \angle 2+m \angle 5=180$

For \#11-14, find the value of x in each question given that lines I and m are parallel. Then find the measure of each angle.

11. $\mathrm{m} \angle \mathrm{C}=3 x-10$ $\mathrm{m} \angle \mathrm{F}=x+70$
12. $\mathrm{m} \angle \mathrm{D}=x+27$
$\mathrm{m} \angle \mathrm{F}=2 x-39$
13. $\mathrm{m} \angle \mathrm{B}=2(x+40)$
$\mathrm{m} \angle \mathrm{G}=5 x+44$
14. $m \angle E=7 x+30$
$\mathrm{m} \angle \mathrm{G}=3 x+10$
15. Given that $\mathrm{m} \angle 4=3 x+10$ and $\mathrm{m} \angle 12=2 x+30$, find the value of $\mathrm{x}, \mathrm{m} \angle 4$, and $\mathrm{m} \angle 10$.

1. If G is the circumcenter of $\triangle A B C$, find each missing measure.

2. If Z is the circumcenter of $\triangle Q R S$, find each missing measure.

3. If C is the incenter of $\triangle \mathrm{MNP}$, find each missing measure.

4. If Y is the incenter of $\Delta S T U$, find each missing measure.

a) $\mathrm{VT}=$ \qquad
b) $\mathrm{YW}=$ \qquad
c) $\mathrm{SX}=$ \qquad
d) $\mathrm{YX}=$ \qquad
e) $S V=$ \qquad
a) $\mathrm{m} \angle \mathrm{CML}=$ \qquad
b) $m \angle M N P=$ \qquad
c) $\mathrm{m} \angle \mathrm{NPC}=$ \qquad
d) $\mathrm{JC}=$ \qquad
e) $\mathrm{MC}=$ \qquad
5. If G is the centroid of $\triangle A C E, A G=26, B C=44$, and $D G=12$, find each missing measure.

a) $G F=$ \qquad
b) $\mathrm{AF}=$ \qquad
c) $P C=$
d) $G B=$
\qquad
e) $D B=$
\qquad
\qquad
6. If Q is the centroid of $\triangle J K L, L N=72, J P=93$, and $M K=78$, find each missing measure.

a) $L Q=$ \qquad
b) $Q N=$ \qquad
c) $Q P=$ \qquad
d) $J Q=$ \qquad
e) $\mathrm{Qk}=$ \qquad

5.3 - Properties of Parallelograms

For \#1-2, use the diagram to solve for x and y if the figure is a parallelogram.

1. $\mathrm{PT}=2 x, \mathrm{QT}=y+12$,
$\mathrm{TR}=x+2, \mathrm{TS}=7 y$

2. $\mathrm{PQ}=y, \mathrm{RS}=4 y-15$,
$\mathrm{QR}=x+6, \mathrm{PS}=4 x-6$

3. Solve for x.

4. Solve for x.

5. Find the measure of $\angle X U V$.

5.4 - Properties of Rectangles, Rhombuses, and Squares

For questions \#1-4, find x given that each figure is a rectangle.

1. $\mathrm{KM}=5 x-2$ and $\mathrm{JL}=2 x+16$
2.

3. $A C=38, D R=2 x$, and $B R=4 x+2$

4.

For questions \#4-8, each figure is a rhombus.
5. Find the measure of $\angle A B D$ and $\angle A C D$ given $\angle D B C=44$ and $\angle A C B=46$

6. Solve for x.

For \#7-10, use the figure to the right.
7. Find the $\mathrm{m} \angle 1$.
8. Find the $\mathrm{m} \angle 2$.
9. Find the $\mathrm{m} \angle 3$.
10. Find the $\mathrm{m} \angle 4$.

5.5 - Properties of Kites and Trapezoids

1. Find $m \angle 1, m \angle 2, m \angle 3$.

2. Find $\mathrm{m} \angle 1, \mathrm{~m} \angle 2, \mathrm{~m} \angle 3$.

3. Find JL.
$K M=22$ Find $J L$

4. Find $m \angle R$.

5. Find x and length of $E F$.

6. Find the length of EF.

7. Find $\mathrm{m} \angle 1, \mathrm{~m} \angle 2$.

8. Find $m<1, m<2$.

9. Solve for x .

10. $C O=8, O D=6$. Find $C D$.

5.6 - Proofs with Parallelograms

1. Given: $A B C D$ is a parallelogram

Prove: $\triangle A E B \cong \triangle C E D$

Statement:	Reason:	
1. Parallelogram ABCD	1. Given	
2. $\overline{A B} \cong$	2.	
3. $\overline{A B} \\| \ldots$	3.	
4. $\angle \mathrm{CAB} \cong$	4. Alternate Interior Angles	
5. $\angle \mathrm{AEB} \cong \angle \mathrm{CED}$	5.	
6. $\triangle \mathrm{AEB} \cong \triangle \mathrm{CED}$	6.	

2. $\overline{D E} \cong \overline{F B}$
3. $\overline{A D} \cong$ \qquad
4. $\angle \mathrm{D} \cong$ \qquad
5.
6. $\angle 1 \cong \angle 2$
6.
3. Given: ABCD is a rectangle, M is the midpoint of $\overline{A B}$

Prove: $\overline{D M} \cong \overline{C M}$

Statement:	Reason:
1. Rectangle $A B C D$	1. Given
2. M is the midpoint of $\overline{A B}$	2. Given
3. $\overline{A M} \cong$	3.
4. $\overline{D A} \cong$	4.
5. $\angle \mathrm{A}=\square=90^{\circ}$	5.
6.	6. SAS
7. $\overline{D M} \cong \overline{C M}$	7.

