Converting Between Logarithmic and Exponential Forms

Rewrite in logarithmic form. 1. $6^3 = 216$	2. $7^2 = 49$	3. $\frac{1}{25} = 5^{-2}$
<i>Rewrite in exponential form.</i> 4. $log_39 = 2$	5. $log1000 = 3$	6. $ln7 = 1.95$

Evaluating Logarithms

Evaluate each expression.	Round to two decimal places,	following the rules of rounding.
7 . $log_2 8$	8 . <i>log</i> 56	9 . <i>ln</i> 12

Solving Logarithmic Equations

Solv	e for x.	Apply a property of logarithms when needed.		
10.	$log_9 x = 2$	2 11. $ln(x+1) = 9$ 12	2.	$\log_3\left(2x+7\right) = 4$

13.	$ln\left(2x-8\right)-1=3$	14. $log_x 16 = 2$	$15. \ \log_4 3x^2 + \log_4 2x = 4$
-----	---------------------------	--------------------	-------------------------------------

16. $log_8(6x - 4) = log_8(2x + 12)$ 17. $logx^2 - log3x = 2$

Solving Exponential Equations

Solve for x.

18. $5^x = 22$	19. $e^{3x} = 11$	20. $3^{2x} - 6 = 17$
21. $7^{x+3} = 40$	22. $2 \cdot 9^{3x-8} = 100$	23. $10^x = 4^{2x-3}$

Graphs of Exponential and Logarithmic Functions

Graph each function by using your calculator to generate the t-table. State the domain, range, and asymptote. 24. $f(x) = 2^x - 4$ 25. $f(x) = log_4(x - 1)$

Domain:

Range:

Horizontal Asymptote:

Domain:

Range:

Vertical Asymptote:

Growth and Decay

26. The number of bacteria present in a colony is 180 at 11 a.m. and the number of bacteria doubles every hour. How many will be present at 8 p.m.?

27. If a gallon of milk costs \$3 now and the price is increasing by 10% each year, how long before milk costs \$10 per gallon?

28. Dinner at your grandfather's favorite restaurant now costs \$25.25 and has been increasing steadily at 4% per year. How much did it cost 50 years ago when he was dating your grandmother?

29. The value of an iPod purchased for \$300 decreases by 6% each year. How long until the iPod is worth \$90?

Compound Interest

30. How much money will be available in 7 years if \$400 is invested at 3% interest compounded continuously?

31. How long will it take for \$600 to double if it is invested at 4% interest compounded monthly?

32. How much money must be invested at 6.5% interest compounded quarterly for \$50,000 to be available in 7 years?

33. How long will it take to have \$1400 if \$900 is invested at 7% interest compounded continuously?